Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2010, Volume 10, Issue 1, Pages 89–94 (Mi vngu33)  

This article is cited in 1 scientific paper (total in 1 paper)

About Periodic Groups of Shunkov Saturated by Central Expansions of Finite 2-Groups by Means of Group $L_2(5)$

D. N. Panyushkin, L. R. Tukhvatullina, K. A. Filippov

Krasnoyarsk State Agricultural University
Full-text PDF (218 kB) Citations (1)
References:
Abstract: Let $\Re$ be a set of finite groups. A group $G$ is said to be saturated by $\Re$, if every finite subgroup of $G$ is contained in a subgroup isomorphic to a group from $\Re$. We prove that a periodic group of Shunkov saturated by set $\Re=\{L_2(5)\times \langle v\rangle\}$, where $I_n$ — direct product of $n$ copys of groups of order 2, is locally finite group.
Keywords: periodic group, group of Shunkov, saturation.
Received: 24.09.2009
Document Type: Article
UDC: 512.54
Language: Russian
Citation: D. N. Panyushkin, L. R. Tukhvatullina, K. A. Filippov, “About Periodic Groups of Shunkov Saturated by Central Expansions of Finite 2-Groups by Means of Group $L_2(5)$”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:1 (2010), 89–94
Citation in format AMSBIB
\Bibitem{PanTukFil10}
\by D.~N.~Panyushkin, L.~R.~Tukhvatullina, K.~A.~Filippov
\paper About Periodic Groups of Shunkov Saturated by Central Expansions of~Finite 2-Groups by Means of~Group $L_2(5)$
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2010
\vol 10
\issue 1
\pages 89--94
\mathnet{http://mi.mathnet.ru/vngu33}
Linking options:
  • https://www.mathnet.ru/eng/vngu33
  • https://www.mathnet.ru/eng/vngu/v10/i1/p89
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025