Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2014, Volume 14, Issue 1, Pages 66–83 (Mi vngu327)  

Bilinear Relations for Periods Prym Differentials on Riemann Surfaces

T. A. Pushkareva

Gorno-Altaisk State University
References:
Abstract: Riemann's bilinear relations for periods Abelian differentials play big role in geometrical theory functions on fixed compact Riemann surfaces. In article are all basic relations for periods and views bilinear relations between periods elementary Prym differentials three kinds on variable compact Riemann surface for every characters found.
Keywords: periods Prym differentials, variable compact Riemann surface, characters.
Received: 13.09.2013
English version:
Journal of Mathematical Sciences, 2015, Volume 211, Issue 6, Pages 829–846
DOI: https://doi.org/10.1007/s10958-015-2638-4
Document Type: Article
UDC: 515.17+517.545
Language: Russian
Citation: T. A. Pushkareva, “Bilinear Relations for Periods Prym Differentials on Riemann Surfaces”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:1 (2014), 66–83; J. Math. Sci., 211:6 (2015), 829–846
Citation in format AMSBIB
\Bibitem{Pus14}
\by T.~A.~Pushkareva
\paper Bilinear Relations for Periods Prym Differentials on Riemann Surfaces
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2014
\vol 14
\issue 1
\pages 66--83
\mathnet{http://mi.mathnet.ru/vngu327}
\transl
\jour J. Math. Sci.
\yr 2015
\vol 211
\issue 6
\pages 829--846
\crossref{https://doi.org/10.1007/s10958-015-2638-4}
Linking options:
  • https://www.mathnet.ru/eng/vngu327
  • https://www.mathnet.ru/eng/vngu/v14/i1/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:145
    Full-text PDF :46
    References:40
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024