Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2014, Volume 14, Issue 1, Pages 35–43 (Mi vngu325)  

This article is cited in 5 scientific papers (total in 5 papers)

Elimination of metarecursive in Owing's theorem

M. V. Dorzhieva

Novosibirsk State University
Full-text PDF (237 kB) Citations (5)
References:
Abstract: Proved existence of universe and minimal $\Pi^{1}_{1}$-numerations of $\Pi^{1}_{1}$-sets and absence of Friedberg and positive $\Pi^{1}_{1}$-numerations of all $\Pi^{1}_{1}$-sets.
Keywords: enumeration, minimal numeration, Friedberg numeration, positive numeration, analytical hierarchy.
Received: 13.05.2013
Document Type: Article
UDC: 510.5
Language: Russian
Citation: M. V. Dorzhieva, “Elimination of metarecursive in Owing's theorem”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:1 (2014), 35–43
Citation in format AMSBIB
\Bibitem{Dor14}
\by M.~V.~Dorzhieva
\paper Elimination of metarecursive in Owing's theorem
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2014
\vol 14
\issue 1
\pages 35--43
\mathnet{http://mi.mathnet.ru/vngu325}
Linking options:
  • https://www.mathnet.ru/eng/vngu325
  • https://www.mathnet.ru/eng/vngu/v14/i1/p35
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :71
    References:43
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024