Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2014, Volume 14, Issue 1, Pages 3–18 (Mi vngu322)  

This article is cited in 2 scientific papers (total in 2 papers)

Local Quasimöbius Mappings on a Circle

V. V. Aseev, D. G. Kuzin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
Full-text PDF (282 kB) Citations (2)
References:
Abstract: For a family of continuous light mappings of a circle $S$ into itself it is introduced the notion ${\mathcal D}$-normality which signifies that for every graphically convergent sequence its graphical limit looks like $(Z\times S)\cup \Gamma f$, where $Z$ — zero-dimensional compact set (possibly, empty), and $\Gamma f$ is a graph of either constant mapping or continuous light mapping. It is proved that every ${\mathcal D}$-normal and Möbius invariant family of the mappings of circle $S$ into itself consist of local $\omega$-quasimöbius mappings with unified distortion function $\omega$.
Keywords: quasiconformal mapping, quasisymmetric mappings, quasimöbius mapping, local quasimöbius mapping, light mapping, graphical limit, graphical convergence, normal family of mappings, Möbius invariant families of mappings.
Received: 10.12.2012
English version:
Journal of Mathematical Sciences, 2015, Volume 211, Issue 6, Pages 724–737
DOI: https://doi.org/10.1007/s10958-015-2628-6
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. V. Aseev, D. G. Kuzin, “Local Quasimöbius Mappings on a Circle”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 14:1 (2014), 3–18; J. Math. Sci., 211:6 (2015), 724–737
Citation in format AMSBIB
\Bibitem{AseKuz14}
\by V.~V.~Aseev, D.~G.~Kuzin
\paper Local Quasim\"{o}bius Mappings on a Circle
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2014
\vol 14
\issue 1
\pages 3--18
\mathnet{http://mi.mathnet.ru/vngu322}
\transl
\jour J. Math. Sci.
\yr 2015
\vol 211
\issue 6
\pages 724--737
\crossref{https://doi.org/10.1007/s10958-015-2628-6}
Linking options:
  • https://www.mathnet.ru/eng/vngu322
  • https://www.mathnet.ru/eng/vngu/v14/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:307
    Full-text PDF :71
    References:75
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024