Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2008, Volume 8, Issue 1, Pages 71–76 (Mi vngu281)  

Complexity of Index Sets for Several Classes of Models

E. N. Pavlovsky

Novosibirsk State University
References:
Abstract: When we study questions about computable characterization existence for different classes of models the approach suggested by Goncharov and Knight [1] is effective. It consists of obtaining precise estimations of index sets of such classes in corresponding hierarchy.
For the universal numeration of computable models in non-trivial computable language there were found precise estimations of the following index sets of computable models classes: models with Ehrenfeucht theory ($\Pi^1_1$), models with a theory admitting infinitely many countable models ($\Sigma^1_1$).
Received: 13.02.2008
Document Type: Article
UDC: 510.67, 510.5+510.635
Language: Russian
Citation: E. N. Pavlovsky, “Complexity of Index Sets for Several Classes of Models”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:1 (2008), 71–76
Citation in format AMSBIB
\Bibitem{Pav08}
\by E.~N.~Pavlovsky
\paper Complexity of Index Sets for Several Classes of Models
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2008
\vol 8
\issue 1
\pages 71--76
\mathnet{http://mi.mathnet.ru/vngu281}
Linking options:
  • https://www.mathnet.ru/eng/vngu281
  • https://www.mathnet.ru/eng/vngu/v8/i1/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025