Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2007, Volume 7, Issue 3, Pages 13–44 (Mi vngu265)  

Conservative extensions of models with weakly o-minimal theories

B. S. Baizhanov

Institute for Problems of Informatics and Control Sciences, Almaty
References:
Abstract: Let $M\prec N$. It is said that a pair of models $(M,N)$ is conservative pair and $N$ is conservative extension of $M$ if for any finite tuple of elements $\overline{\alpha}$ from $N$, $\mathrm{tp}(\overline{\alpha}|M)$ is definable. We say that elementary extension $N$ of $M$ is $D$-good if any definable $q\in S(M\cup\overline{\alpha})$ ($\overline{\alpha}\in N\setminus M$) is realized in $N$ and $N$ is $CD$-good if any non-isolated one-type $q\in S_1(M\cup\overline{\alpha})$ ($\overline{\alpha}\in N\setminus M$), which is determined (approximated) by definable $\phi$-type, is realized in $N$.
We prove that any model $M$ of any weakly o-minimal theory except one, theory of discrete order with ends, has conservative extension. The central point in our paper is the criterion of the existence of the $CD$-$\omega$-saturated conservative extension of an arbitrary model of weakly o-minimal theory (Theorem 2). As corollary of this proof it follows the existence of $CD$-$\omega$-saturated conservative extension for any model of any weakly o-minimal theory except one and the results on omitting of natural family of definable one-types and all non-definable types (Corollary 5). The existence of conservative and $CD$-$\omega$-saturated conservative extensions for o-minimal theories have been proved accordingly in D. Marker, “Omitting types in o-minimal theories”, The Journal of Symbolic Logic, Vol. 51(1986), P. 63–74., Y. Baisalov, B. Poizat, “Paires de structures o-minimales”, The Journal of Symbolic Logic, Vol. 63(1998), P. 570–578.
Received: 30.04.2003
Document Type: Article
UDC: 510.67
Language: Russian
Citation: B. S. Baizhanov, “Conservative extensions of models with weakly o-minimal theories”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:3 (2007), 13–44
Citation in format AMSBIB
\Bibitem{Bai07}
\by B.~S.~Baizhanov
\paper Conservative extensions of models with weakly o-minimal theories
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2007
\vol 7
\issue 3
\pages 13--44
\mathnet{http://mi.mathnet.ru/vngu265}
Linking options:
  • https://www.mathnet.ru/eng/vngu265
  • https://www.mathnet.ru/eng/vngu/v7/i3/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :89
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024