Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2007, Volume 7, Issue 2, Pages 65–87 (Mi vngu262)  

On the existence of a contraction mapping preserving boundary values

A. I. Parfënov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: Let $\mu$ be a finite positive measure defined in the cube $Q=(0,1)^n$ of Euclidean space. Let $S$ be one of the faces of $Q$. For $mp>n$, we consider the subspace $Z$ of the Sobolev space $W_p^m(Q)$ comprising the functions with the zero total trace on $\partial Q\setminus S$. We investigate whether there exists a nonlinear operator $T$ which is bounded in $Z$, preserves the total trace on $S$, and is contracting in the space $L_{2,\mu}(Q)$. Connections of this condition with the interpolation theory of Banach spaces, indefinite spectral problems, and nonlinear differential equations are presented. We prove some sufficient conditions (in terms of $n$, $m$, $p$, and $\mu$) and the one necessary for the existence of $T$. A criterion (in terms of $\mu$) for the existence of $T$ is obtained when $n=1$. The proof of some of the results employs polynomial approximation of functions with the small Sobolev norm.
Document Type: Article
UDC: 517.987.1+517.988.5
Language: Russian
Citation: A. I. Parfënov, “On the existence of a contraction mapping preserving boundary values”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:2 (2007), 65–87
Citation in format AMSBIB
\Bibitem{Par07}
\by A.~I.~Parf\"enov
\paper On the existence of a contraction mapping preserving boundary values
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2007
\vol 7
\issue 2
\pages 65--87
\mathnet{http://mi.mathnet.ru/vngu262}
Linking options:
  • https://www.mathnet.ru/eng/vngu262
  • https://www.mathnet.ru/eng/vngu/v7/i2/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:240
    Full-text PDF :82
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024