Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2007, Volume 7, Issue 1, Pages 102–113 (Mi vngu257)  

This article is cited in 1 scientific paper (total in 1 paper)

Computable graphs of finite $\Delta_\alpha^0$-dimensions

J. A. Tussupov

РОССИЯ, 630090, г. Новосибирск, ул. Пирогова 16, к. 416
Full-text PDF (261 kB) Citations (1)
References:
Abstract: In present article, we prove the following assertions:
  • For every computable successor ordinal $\alpha$, there exists a $\Delta_\alpha^0$-categorical directed graph (symmetric, irreflexive graph) which is not relatively $\Delta_\alpha^0$-categorical, i.e. no formally $\Sigma_\alpha^0$-Scott family exists for such a structure.
  • For every computable successor ordinal $\alpha$, there exists an intrinsically $\Sigma_\alpha^0$-relation on universe of a computable directed graph (symmetric, irreflexive graph which is not a relatively intrinsically $\Sigma_\alpha^0$-relation.
  • For every computable successor ordinal $\alpha$ and finite $n$, there exists a $\Delta_\alpha^0$-categorical directed graph (symmetric, irreflexive graph) whose $\Delta_\alpha^0$-dimension is equal to $n$.
  • For every computable successor ordinal $\alpha$, there exists a directed graph (symmetric, irreflexive graph) possesing presentations only in the degrees of sets $X$ such that $\Delta_\alpha^0(X)\ne\Delta_\alpha^0$. In particular, for each finite $n$, there exist is a structure with presentations in just the non-low $n$ degrees.
Received: 21.04.2005
Document Type: Article
UDC: 510.6;510.67;512.8
Language: Russian
Citation: J. A. Tussupov, “Computable graphs of finite $\Delta_\alpha^0$-dimensions”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 7:1 (2007), 102–113
Citation in format AMSBIB
\Bibitem{Tus07}
\by J.~A.~Tussupov
\paper Computable graphs of finite $\Delta_\alpha^0$-dimensions
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2007
\vol 7
\issue 1
\pages 102--113
\mathnet{http://mi.mathnet.ru/vngu257}
Linking options:
  • https://www.mathnet.ru/eng/vngu257
  • https://www.mathnet.ru/eng/vngu/v7/i1/p102
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025