Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2006, Volume 6, Issue 2, Pages 57–66 (Mi vngu231)  

Stationary problems for two-phase nonisothermal flows in porous media

V. N. Monakhov
References:
Abstract: In this paper we prove the existence theorems for stationary boundary-value problems of thermal two-phase filtration in the classes of generalized and classic solutions (the Masket–Lerevett model). Solutions are constructed by an iteration method. It is proved that the approximate solutions converge and an estimation of the convergence rate is performed.
Document Type: Article
UDC: 517.958.532
Language: Russian
Citation: V. N. Monakhov, “Stationary problems for two-phase nonisothermal flows in porous media”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 6:2 (2006), 57–66
Citation in format AMSBIB
\Bibitem{Mon06}
\by V.~N.~Monakhov
\paper Stationary problems for two-phase nonisothermal flows in porous media
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2006
\vol 6
\issue 2
\pages 57--66
\mathnet{http://mi.mathnet.ru/vngu231}
Linking options:
  • https://www.mathnet.ru/eng/vngu231
  • https://www.mathnet.ru/eng/vngu/v6/i2/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024