Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2005, Volume 5, Issue 4, Pages 42–59 (Mi vngu219)  

This article is cited in 2 scientific papers (total in 2 papers)

Maximal families of periodic solutions in a kinetic model of heterogeneous catalytic reaction

E. A. Lashina, G. A. Chumakov, N. A. Chumakova
Full-text PDF (792 kB) Citations (2)
References:
Abstract: In the paper a two-variable kinetic model of heterogeneous catalytic hydrogen oxidation on metallic catalysts is presented. The dynamical system that depends continuously on a set of real parameters is under study, i.e., we consider continuous families of dynamical systems. Our attention focusses on the description of the changes observed in flows depending upon one parameter, primarily, on the maximal families of periodic solutions.
We deal with the global bifurcation properties of periodic orbits which can not be deduced from the local information and which engender in the flow the sensitive dependence on the initial conditions. The simplest of these involves the occurrence of planar homoclinic orbits. Studying the one-parameter family of two-variable systems with fast and slow variables it has become clear that the parametric sensitivity appears due to existence of stable and unstable canard cycles which occur close to the Hopf bifurcation.
We describe some specific bundles of trajectories such as tunnels, whirlpools, and showers which illustrate a high sensitivity to the initial conditions. A new algorithm for refinement of a homoclinic orbit in one-parameter family of planar vector fields is proposed in the paper.
Document Type: Article
UDC: 517.927+519.62+519.614
Language: Russian
Citation: E. A. Lashina, G. A. Chumakov, N. A. Chumakova, “Maximal families of periodic solutions in a kinetic model of heterogeneous catalytic reaction”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:4 (2005), 42–59
Citation in format AMSBIB
\Bibitem{LasChuChu05}
\by E.~A.~Lashina, G.~A.~Chumakov, N.~A.~Chumakova
\paper Maximal families of periodic solutions in a kinetic model of heterogeneous catalytic reaction
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2005
\vol 5
\issue 4
\pages 42--59
\mathnet{http://mi.mathnet.ru/vngu219}
Linking options:
  • https://www.mathnet.ru/eng/vngu219
  • https://www.mathnet.ru/eng/vngu/v5/i4/p42
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025