Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2005, Volume 5, Issue 3, Pages 43–56 (Mi vngu213)  

Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order

S. G. Pyatkov
References:
Abstract: Under consideration is the equation
$$ Mu=L_0(x,t,D_x)u_t+L_1(x,t,D_x)u=f(x,t),\quad(x,t)\in Q=G\times(0,T), $$
where $G\subset\mathbb{R}^n$ is a bounded domain with boundary $\Gamma$ and $L_0$, $L_1$ are elliptic operators of the second and forth order, respectively. The boundary conditions are of the form
$$ u|_S=\varphi(x,t), \quad\frac{\partial u}{\partial n}\Bigl|_S=\psi(x,t), \quad u|_{t=0}=u_0(x), \quad S=\Gamma\times(0,T). $$
It is demonstrated that this problem is uniquely solvable in the weighted Sobolev space whose norm is defined by the equality
$$ \|u\|^p=\sum_{|\alpha|\leqslant2}\|\rho D^\alpha u_t\|^p_{L_p(Q)}+\sum_{|\alpha|\leqslant4}\|\rho D^\alpha u\|^p_{L_p(Q)}, $$
where $\rho(x)$ is the distance from a point $x$ to $\Gamma$.
Document Type: Article
UDC: 517.95
Language: Russian
Citation: S. G. Pyatkov, “Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:3 (2005), 43–56
Citation in format AMSBIB
\Bibitem{Pya05}
\by S.~G.~Pyatkov
\paper Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2005
\vol 5
\issue 3
\pages 43--56
\mathnet{http://mi.mathnet.ru/vngu213}
Linking options:
  • https://www.mathnet.ru/eng/vngu213
  • https://www.mathnet.ru/eng/vngu/v5/i3/p43
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024