|
Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2005, Volume 5, Issue 3, Pages 43–56
(Mi vngu213)
|
|
|
|
Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order
S. G. Pyatkov
Abstract:
Under consideration is the equation
$$
Mu=L_0(x,t,D_x)u_t+L_1(x,t,D_x)u=f(x,t),\quad(x,t)\in Q=G\times(0,T),
$$
where $G\subset\mathbb{R}^n$ is a bounded domain with boundary $\Gamma$ and $L_0$, $L_1$ are elliptic operators of the second and forth order, respectively. The boundary conditions are of the form
$$
u|_S=\varphi(x,t), \quad\frac{\partial u}{\partial n}\Bigl|_S=\psi(x,t), \quad u|_{t=0}=u_0(x), \quad S=\Gamma\times(0,T).
$$
It is demonstrated that this problem is uniquely solvable in the weighted Sobolev space
whose norm is defined by the equality
$$
\|u\|^p=\sum_{|\alpha|\leqslant2}\|\rho D^\alpha u_t\|^p_{L_p(Q)}+\sum_{|\alpha|\leqslant4}\|\rho D^\alpha u\|^p_{L_p(Q)},
$$
where $\rho(x)$ is the distance from a point $x$ to $\Gamma$.
Citation:
S. G. Pyatkov, “Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:3 (2005), 43–56
Linking options:
https://www.mathnet.ru/eng/vngu213 https://www.mathnet.ru/eng/vngu/v5/i3/p43
|
|