Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2009, Volume 9, Issue 3, Pages 86–94 (Mi vngu184)  

This article is cited in 4 scientific papers (total in 4 papers)

On properties of solutions to one system modeling a multistage substance synthesis

I. I. Matveevaa, A. M. Popovb

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
Full-text PDF (191 kB) Citations (4)
References:
Abstract: The Cauchy problem for a system of ordinary differential equations modeling a multistage substance synthesis is considered. We study properties of the last component of its solution, describing the concentration of the synthesis product, as a function of the parameter $\tau$ characterizing the total time of the synthesis process. The continuous dependence on $\tau$ is established, estimates for the continuity module are obtained. We prove the uniform convergence as $\tau \to 0$; moreover, the limit function is a solution to the Cauchy problem for one ordinary differential equation.
Received: 05.06.2009
Document Type: Article
UDC: 517.925.54+517.929
Language: Russian
Citation: I. I. Matveeva, A. M. Popov, “On properties of solutions to one system modeling a multistage substance synthesis”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:3 (2009), 86–94
Citation in format AMSBIB
\Bibitem{MatPop09}
\by I.~I.~Matveeva, A.~M.~Popov
\paper On properties of solutions to one system modeling a multistage substance synthesis
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2009
\vol 9
\issue 3
\pages 86--94
\mathnet{http://mi.mathnet.ru/vngu184}
Linking options:
  • https://www.mathnet.ru/eng/vngu184
  • https://www.mathnet.ru/eng/vngu/v9/i3/p86
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :50
    References:51
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024