Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2009, Volume 9, Issue 2, Pages 30–37 (Mi vngu171)  

This article is cited in 1 scientific paper (total in 1 paper)

On Constructive Models of Theories with Linear Rudin–Keisler Ordering

A. N. Gavryushkin

Novosibirsk State University
Full-text PDF (216 kB) Citations (1)
References:
Abstract: Syntactical characterisation of the class of Ehrenfeucht theories was got in [1] by Sudoplatov. It was proved that one can set any Ehrenfeucht theory by a finite pre-ordering (Rudin–Keisler pre-ordering) and a function from this pre-ordering to the set of natural numbers as parameters.
One of the main results of the paper is the next one. For all $1\leqslant n\in\omega$ there exists an Ehrenfeucht theory $T_n$ such that $RK(T_n)\cong L_n$, all quasi-prime models of $T_n$ have no computable presentations, there exists computably presentable model of $T_n$.
[1] Sudoplatov, S. V., Complete Theories with Finitely Many Countable Models // Algebra and Logic. 2004. Vol. 43. No. 1. P. 62–69.
Received: 01.12.2008
Document Type: Article
UDC: 510.53+510.67
Language: Russian
Citation: A. N. Gavryushkin, “On Constructive Models of Theories with Linear Rudin–Keisler Ordering”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009), 30–37
Citation in format AMSBIB
\Bibitem{Gav09}
\by A.~N.~Gavryushkin
\paper On Constructive Models of Theories with Linear Rudin--Keisler Ordering
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2009
\vol 9
\issue 2
\pages 30--37
\mathnet{http://mi.mathnet.ru/vngu171}
Linking options:
  • https://www.mathnet.ru/eng/vngu171
  • https://www.mathnet.ru/eng/vngu/v9/i2/p30
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:195
    Full-text PDF :79
    References:48
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024