|
Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2013, Volume 13, Issue 2, Pages 51–60
(Mi vngu142)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Triviality of function $\omega_2$ for spatial complete graphs
A. A. Kazakov, Ph. G. Korablev Chelyabinsk State University
Abstract:
Let $G_n$, $n\geqslant 6$, be a complete spatial graph with $n$ vertices. In 1983 J. Y. Conway and C. McA. Gordon introduced function $\omega_2$ for all such graphs with 6 vertices. They proved that $\omega_2(G_6) = 1$ for any spatial graph $G_6$, and hence any such graph contains non-trivial link. In present work we prove that $\omega_2(G_n) = 0$ for any spatial complete graph $G_n$ with $n\geqslant 7$ vertices.
Keywords:
spatial graph, hamiltonian set of circles, link, complete graph.
Received: 23.04.2012
Citation:
A. A. Kazakov, Ph. G. Korablev, “Triviality of function $\omega_2$ for spatial complete graphs”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:2 (2013), 51–60; J. Math. Sci., 203:4 (2014), 490–498
Linking options:
https://www.mathnet.ru/eng/vngu142 https://www.mathnet.ru/eng/vngu/v13/i2/p51
|
|