|
Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2013, Volume 13, Issue 1, Pages 120–134
(Mi vngu135)
|
|
|
|
An existence of the solution for identification problem of coefficient in special form at source function
I. V. Frolenkov, E. N. Kriger Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
Abstract:
An identification problem of the special form coefficient at source function in twodimensional parabolic equation with Cauchy data was studied in this article. Unknown coefficient is considered as the product of two unknown functions, each of which depends on the time and one spatial variable. The theorems of existence of the solution for direct and inverse problems has been proved using a weak approximation method.
Keywords:
inverse problem, identification problem, method of weak approximation, existence of the solution, equations in partial derivatives.
Received: 01.08.2011
Citation:
I. V. Frolenkov, E. N. Kriger, “An existence of the solution for identification problem of coefficient in special form at source function”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013), 120–134; J. Math. Sci., 203:4 (2014), 464–477
Linking options:
https://www.mathnet.ru/eng/vngu135 https://www.mathnet.ru/eng/vngu/v13/i1/p120
|
Statistics & downloads: |
Abstract page: | 227 | Full-text PDF : | 62 | References: | 46 | First page: | 12 |
|