Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2013, Volume 13, Issue 1, Pages 76–90 (Mi vngu132)  

Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space

M. V. Kurkinaa, E. D. Rodionovb, V. V. Slavskya

a Yugra State University, Khanty-Mansiysk, Russia
b Altai State University, Barnaul, Russia
References:
Abstract: Convex surfaces in Lobachevsky's space correspond to conformally flat metrics of the bounded curvature. Convex polyhedrons are the most important convex sets in the practical relation. In this paper the corresponding conformally flat metrics are studied, and numerical algorithms for the construction of such metrics are considered in details.
Keywords: conformally flat metrics, interpolation, convex polyhedrons in Lobachevsky's space.
Received: 15.04.2012
English version:
Journal of Mathematical Sciences, 2014, Volume 203, Issue 4, Pages 516–526
DOI: https://doi.org/10.1007/s10958-014-2155-x
Document Type: Article
UDC: 514.765.2+519.65
Language: Russian
Citation: M. V. Kurkina, E. D. Rodionov, V. V. Slavsky, “Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 13:1 (2013), 76–90; J. Math. Sci., 203:4 (2014), 516–526
Citation in format AMSBIB
\Bibitem{KurRodSla13}
\by M.~V.~Kurkina, E.~D.~Rodionov, V.~V.~Slavsky
\paper Numerical methods of interpolation for the solution of some problems of the convex geometry in Lobachevsky's space
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2013
\vol 13
\issue 1
\pages 76--90
\mathnet{http://mi.mathnet.ru/vngu132}
\transl
\jour J. Math. Sci.
\yr 2014
\vol 203
\issue 4
\pages 516--526
\crossref{https://doi.org/10.1007/s10958-014-2155-x}
Linking options:
  • https://www.mathnet.ru/eng/vngu132
  • https://www.mathnet.ru/eng/vngu/v13/i1/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :77
    References:43
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024