Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. J. Pure and Appl. Math.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Novosibirskogo Gosudarstvennogo Universiteta. Seriya Matematika, Mekhanika, Informatika, 2011, Volume 11, Issue 4, Pages 94–106 (Mi vngu103)  

New Estimations of Fixation Time Mean for Populations with Fixed Size

A. K. Slizhevsky

Omsk Branch of Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The population consisting from $N$ of particles is considered, each of which attributes some type. All particles during the integer moments of time perish and generate a random number of particles of the same type, as the parent. Thus population keeps the size $N$, and the casual vectors setting number of posterity from each particle, have the distributions independent concerning any shifts of coordinates. Justice of the top estimation based on decomposition of function $v (k)$ under the Taylor formula to within 5 moments is proved. Conditions at which the new estimation improves earlier known are resulted.
Keywords: Markov chains, evolution of populations, most recent common ancestor, fixation time, imitation modeling.
Received: 10.12.2010
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. K. Slizhevsky, “New Estimations of Fixation Time Mean for Populations with Fixed Size”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 11:4 (2011), 94–106
Citation in format AMSBIB
\Bibitem{Sli11}
\by A.~K.~Slizhevsky
\paper New Estimations of Fixation Time Mean for Populations with Fixed Size
\jour Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform.
\yr 2011
\vol 11
\issue 4
\pages 94--106
\mathnet{http://mi.mathnet.ru/vngu103}
Linking options:
  • https://www.mathnet.ru/eng/vngu103
  • https://www.mathnet.ru/eng/vngu/v11/i4/p94
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Новосибирского государственного университета. Серия: математика, механика, информатика
    Statistics & downloads:
    Abstract page:156
    Full-text PDF :65
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024