Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2009, Number 3, Pages 33–40 (Mi vmumm874)  

Mathematics

Weakly infinite-dimensional spaces modulo simplicial complexes

V. V. Fedorchuk

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract: The classes of spaces ${\mathscr{K}}\text{-}{\rm wid}$ and ${\mathscr{L}}\text{-}{\rm wid}$ are introduced for the class $\mathscr{K}$ of finite simplicial complexes and the class $\mathscr{L}$ of compact polyhedra. If ${\mathscr{K}}={\mathscr{L}}=\{0,1\}$, then ${\mathscr{K}}\text{-}{\rm wid}={\rm wid}$, ${\mathscr{L}}\text{-}{\rm wid}=S\text{-}{\rm wid}$. It is proved that $S\text{-}{\rm wid}\subset{\mathscr{L}} \text{-}{\rm wid}$ and ${\mathscr{L}}\text{-}{\rm wid} =S\text{-}{\mathscr{L}}_\tau\text{-}{\rm wid}$ for any triangulation $\tau$ of the class $\mathscr{L}$.
Key words: weakly initite-dimensional space, simplicial complex, polyhedron.
Received: 17.11.2008
Bibliographic databases:
Document Type: Article
UDC: 515.12
Language: Russian
Citation: V. V. Fedorchuk, “Weakly infinite-dimensional spaces modulo simplicial complexes”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 3, 33–40
Citation in format AMSBIB
\Bibitem{Fed09}
\by V.~V.~Fedorchuk
\paper Weakly infinite-dimensional spaces modulo simplicial complexes
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2009
\issue 3
\pages 33--40
\mathnet{http://mi.mathnet.ru/vmumm874}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2664496}
\zmath{https://zbmath.org/?q=an:1304.55009}
Linking options:
  • https://www.mathnet.ru/eng/vmumm874
  • https://www.mathnet.ru/eng/vmumm/y2009/i3/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024