|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2009, Number 3, Pages 33–40
(Mi vmumm874)
|
|
|
|
Mathematics
Weakly infinite-dimensional spaces modulo simplicial complexes
V. V. Fedorchuk Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
The classes of spaces ${\mathscr{K}}\text{-}{\rm wid}$ and ${\mathscr{L}}\text{-}{\rm wid}$ are introduced for the class $\mathscr{K}$ of finite simplicial complexes and the class $\mathscr{L}$ of compact polyhedra. If ${\mathscr{K}}={\mathscr{L}}=\{0,1\}$, then ${\mathscr{K}}\text{-}{\rm wid}={\rm wid}$, ${\mathscr{L}}\text{-}{\rm wid}=S\text{-}{\rm wid}$. It is proved that $S\text{-}{\rm wid}\subset{\mathscr{L}} \text{-}{\rm wid}$ and ${\mathscr{L}}\text{-}{\rm wid} =S\text{-}{\mathscr{L}}_\tau\text{-}{\rm wid}$ for any triangulation $\tau$ of the class $\mathscr{L}$.
Key words:
weakly initite-dimensional space, simplicial complex, polyhedron.
Received: 17.11.2008
Citation:
V. V. Fedorchuk, “Weakly infinite-dimensional spaces modulo simplicial complexes”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 3, 33–40
Linking options:
https://www.mathnet.ru/eng/vmumm874 https://www.mathnet.ru/eng/vmumm/y2009/i3/p33
|
|