Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2009, Number 2, Pages 56–59 (Mi vmumm861)  

Short notes

Linear independence of values of Lerch functions

E. A. Ulanskii

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract: The number of linearly independent numbers among $1,\Phi _1\left( z,\frac{p}{q}\right),\ldots,\Phi _a\left( z,\frac{p}{q}\right)$ is estimated depending on a natural number $a$, where $\Phi _s \left(z,\frac{p}{q}\right),\ s=1,2,\ldots$, are Lerch functions.
Key words: Lerch functions, generalized polylogarithms, linear independence.
Received: 02.04.2007
Revised: 27.06.2007
Bibliographic databases:
Document Type: Article
UDC: 517.521
Language: Russian
Citation: E. A. Ulanskii, “Linear independence of values of Lerch functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009, no. 2, 56–59
Citation in format AMSBIB
\Bibitem{Ula09}
\by E.~A.~Ulanskii
\paper Linear independence of values of Lerch functions
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2009
\issue 2
\pages 56--59
\mathnet{http://mi.mathnet.ru/vmumm861}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2543173}
\zmath{https://zbmath.org/?q=an:1304.11067}
Linking options:
  • https://www.mathnet.ru/eng/vmumm861
  • https://www.mathnet.ru/eng/vmumm/y2009/i2/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024