|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2010, Number 3, Pages 51–53
(Mi vmumm789)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short notes
Sign change of the function $S(t)$ on short intervals
R. N. Boyarinov Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
A theorem for the sign change of the argument of the Riemann zeta function $S(t)$ in the interval $(t-A,t+A)$ with $A=4,39\ln\ln\ln\ln T$ for each $t,$ $T\le t\le T+H$, excluding values from the set $E$ with measure ${\rm mes}(E) =O\left(H(\ln\ln T)^{-1}(\ln\ln\ln T)^{-0,5}\right)$ is proved.
Key words:
argument of the Riemann zeta function, Selberg's approximate formula.
Received: 25.12.2009
Citation:
R. N. Boyarinov, “Sign change of the function $S(t)$ on short intervals”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 3, 51–53
Linking options:
https://www.mathnet.ru/eng/vmumm789 https://www.mathnet.ru/eng/vmumm/y2010/i3/p51
|
|