|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2010, Number 1, Pages 30–36
(Mi vmumm749)
|
|
|
|
Mathematics
The linearity of metric projection operator for subspaces of $L_p$ spaces
Yu. Yu. Druzhinin Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
Let $Y$ be a Chebyshev subspace of a Banach space $X$. Then the single-valued metric projection operator $P_Y:X\to Y$ taking each $x\in X$ to the nearest element $y\in Y$ is well defined. Let $M$ be an arbitrary set and $\mu$ be a $\sigma$-finite measure on some $\sigma$-algebra $\Sigma$ of subsets of $M$. We give a description of Chebyshev subspaces $Y\subset L_p(M,\Sigma,\mu)$ with finite dimension and finite codimension the operator $P_Y$ is linear for.
Key words:
metric projection, Chebyshev subspace, quasiorthogonal set, linearity criterion.
Received: 20.10.2008
Citation:
Yu. Yu. Druzhinin, “The linearity of metric projection operator for subspaces of $L_p$ spaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 1, 30–36
Linking options:
https://www.mathnet.ru/eng/vmumm749 https://www.mathnet.ru/eng/vmumm/y2010/i1/p30
|
Statistics & downloads: |
Abstract page: | 60 | Full-text PDF : | 22 |
|