|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2011, Number 6, Pages 3–7
(Mi vmumm727)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Mathematics
Inertial manifold for a hyperbolic equation with dissipation
N. A. Chalkina Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
{Sufficient conditions for the existence of an inertial manifold are found for the equation $u_{tt}+2\gamma u_t-\Delta u=f(u, u_t)$,
$u=u(x, t), x\in\Omega\Subset\mathbb{R}^N, u|_{\partial\Omega}=0, t>0$ and the function $f$ is supposed to satisfy the Lipschitz condition.
Key words:
inertial manifold, hyperbolic equation with dissipation.
Received: 23.11.2010
Citation:
N. A. Chalkina, “Inertial manifold for a hyperbolic equation with dissipation”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 6, 3–7
Linking options:
https://www.mathnet.ru/eng/vmumm727 https://www.mathnet.ru/eng/vmumm/y2011/i6/p3
|
|