Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2011, Number 3, Pages 50–52 (Mi vmumm688)  

Short notes

The generalized Oppenheim expansions for the direct product of non-Archimedean fields

I. Y. Sukharev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract: The well-known Oppenheim expansion algorithm in the field $\mathbb{Q}_p$ is generalized to the ring $\mathbb{Q}_g$, where $g=p_1\cdot\ldots\cdot p_{N}$. The metric properties of the digits of this expansion and also the metric properties of the coefficients of some expansions of polyadic numbers are studied.
Key words: Oppenheim expansion, $p$-adic numbers, polyadic numbers.
Received: 18.10.2010
Bibliographic databases:
Document Type: Article
UDC: 511.37+511.36
Language: Russian
Citation: I. Y. Sukharev, “The generalized Oppenheim expansions for the direct product of non-Archimedean fields”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 3, 50–52
Citation in format AMSBIB
\Bibitem{Suk11}
\by I.~Y.~Sukharev
\paper The generalized Oppenheim expansions for the direct product of non-Archimedean fields
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2011
\issue 3
\pages 50--52
\mathnet{http://mi.mathnet.ru/vmumm688}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2918869}
Linking options:
  • https://www.mathnet.ru/eng/vmumm688
  • https://www.mathnet.ru/eng/vmumm/y2011/i3/p50
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:42
    Full-text PDF :15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024