Loading [MathJax]/jax/output/SVG/config.js
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2019, Number 3, Pages 69–71 (Mi vmumm632)  

This article is cited in 5 scientific papers (total in 5 papers)

Short notes

The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems

A. N. Vetokhin

Bauman Moscow State Technical University
Full-text PDF (94 kB) Citations (5)
References:
Abstract: The description of the set of lower semi-continuity points and the set of upper semi-continuity points of the topological entropy of the systems considered as a function on some parameter is obtained for a family of dynamical systems continuously dependent on parameter.
Key words: topological entropy.
Received: 28.09.2018
English version:
Moscow University Mathematics Bulletin, 2019, Volume 74, Issue 3, Pages 131–133
DOI: https://doi.org/10.3103/S0027132219030069
Bibliographic databases:
Document Type: Article
UDC: 517.93
Language: Russian
Citation: A. N. Vetokhin, “The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 3, 69–71; Moscow University Mathematics Bulletin, 74:3 (2019), 131–133
Citation in format AMSBIB
\Bibitem{Vet19}
\by A.~N.~Vetokhin
\paper The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2019
\issue 3
\pages 69--71
\mathnet{http://mi.mathnet.ru/vmumm632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3986187}
\zmath{https://zbmath.org/?q=an:1429.37009}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2019
\vol 74
\issue 3
\pages 131--133
\crossref{https://doi.org/10.3103/S0027132219030069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000475674900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068723437}
Linking options:
  • https://www.mathnet.ru/eng/vmumm632
  • https://www.mathnet.ru/eng/vmumm/y2019/i3/p69
  • This publication is cited in the following 5 articles:
    1. A. N. Vetokhin, “Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 78:3 (2023), 144–149  mathnet  mathnet  crossref  crossref
    2. A. N. Vetokhin, “Exact Baire classification of local entropy of parametric sets of dynamical systems”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 78:6 (2023), 281–290  mathnet  mathnet  crossref  crossref
    3. A. N. Vetokhin, “On the set of continuity of topological entropy families of segment mappings depending on the parameter”, Funct. Anal. Appl., 55:3 (2021), 210–216  mathnet  crossref  crossref  isi
    4. A. N. Vetokhin, “Some Properties of the Topological Entropy of a Family of Dynamical Systems Defined on an Arbitrary Metric Space”, Diff Equat, 57:8 (2021), 975  crossref
    5. A. N. Vetokhin, “On Some Properties of Topological Entropy and Topological Pressure of Families of Dynamical Systems Continuously Depending on a Parameter”, Diff Equat, 55:10 (2019), 1275  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:126
    Full-text PDF :34
    References:29
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025