Abstract:
The description of the set of lower semi-continuity points and the set of upper semi-continuity points of the topological entropy of the systems considered as a function on some parameter is obtained for a family of dynamical systems continuously dependent on parameter.
Citation:
A. N. Vetokhin, “The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 3, 69–71; Moscow University Mathematics Bulletin, 74:3 (2019), 131–133
\Bibitem{Vet19}
\by A.~N.~Vetokhin
\paper The set of lower semi-continuity points of topological entropy of a continuous one-parametric family of dynamical systems
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2019
\issue 3
\pages 69--71
\mathnet{http://mi.mathnet.ru/vmumm632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3986187}
\zmath{https://zbmath.org/?q=an:1429.37009}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2019
\vol 74
\issue 3
\pages 131--133
\crossref{https://doi.org/10.3103/S0027132219030069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000475674900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068723437}
Linking options:
https://www.mathnet.ru/eng/vmumm632
https://www.mathnet.ru/eng/vmumm/y2019/i3/p69
This publication is cited in the following 5 articles:
A. N. Vetokhin, “Set of definitely attained values of the topological entropy of continuous mappings of the Cantor set”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 78:3 (2023), 144–149
A. N. Vetokhin, “Exact Baire classification of local entropy of parametric sets of dynamical systems”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 78:6 (2023), 281–290
A. N. Vetokhin, “On the set of continuity of topological entropy families of segment mappings depending on the parameter”, Funct. Anal. Appl., 55:3 (2021), 210–216
A. N. Vetokhin, “Some Properties of the Topological Entropy of a Family of Dynamical Systems Defined on an Arbitrary Metric Space”, Diff Equat, 57:8 (2021), 975
A. N. Vetokhin, “On Some Properties of Topological Entropy and Topological Pressure of Families of Dynamical Systems Continuously Depending on a Parameter”, Diff Equat, 55:10 (2019), 1275