Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2019, Number 2, Pages 22–28 (Mi vmumm609)  

Mechanics

A procedure for experimental estimation of the long-term strength of polymer materials using the test results of ring specimens

Yu. P. Zezin, P. V. Tishin

Lomonosov Moscow State University, Institute of Mechanics
References:
Abstract: The results of numerical analysis of stress state of annular specimens of a polymer material under internal pressure are presented. The internal pressure is produced by the mean of compression of an incompressible inset in the inner cavity of the specimen. The calculations were carried out for ring specimens of polyarylate. The calculated stress distribution in specimen was obtained at a constant load. It was shown that the stress distribution in the cross-section of the specimen is not uniform for the considered type of loading. The effect of the elastic modulus and the Poisson's ratio of the loading inset on the tensile stresses in the specimens is studied. It is also shown that it is possible to use the maximum stress value or the stress intensity to estimate the long-term strength of polymer rings. The numerical results are used to evaluate the durability of polyarylate sealing rings produced by injection molding at different values of the polymer melt temperature. The experimental time dependencies before fracture on the maximum stress value are presented for specimens manufactured at the temperatures of 310 and 350$^{\circ}$ C. A new exponential equation is proposed for the approximation of experimental curves.
Key words: polymers, long-term strength, annular specimens, numerical modeling, polyarylate.
Funding agency Grant number
Russian Foundation for Basic Research 15-08-03604-à
Received: 03.11.2017
English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2019, Volume 74, Issue 2, Pages 29–35
DOI: https://doi.org/10.3103/S0027133019020018
Bibliographic databases:
Document Type: Article
UDC: 620.162.4
Language: Russian
Citation: Yu. P. Zezin, P. V. Tishin, “A procedure for experimental estimation of the long-term strength of polymer materials using the test results of ring specimens”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 2, 22–28; Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 74:2 (2019), 29–35
Citation in format AMSBIB
\Bibitem{ZezTis19}
\by Yu.~P.~Zezin, P.~V.~Tishin
\paper A procedure for experimental estimation of the long-term strength of polymer materials using the test results of ring specimens
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2019
\issue 2
\pages 22--28
\mathnet{http://mi.mathnet.ru/vmumm609}
\transl
\jour Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin
\yr 2019
\vol 74
\issue 2
\pages 29--35
\crossref{https://doi.org/10.3103/S0027133019020018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000466898600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065241183}
Linking options:
  • https://www.mathnet.ru/eng/vmumm609
  • https://www.mathnet.ru/eng/vmumm/y2019/i2/p22
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :31
    References:37
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024