Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2019, Number 1, Pages 57–61 (Mi vmumm602)  

This article is cited in 2 scientific papers (total in 2 papers)

Short notes

Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter

V. E. Vladykina

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (219 kB) Citations (2)
References:
Abstract: We consider the Sturm–Liouville equation
$$-(r^2y')'+py'+qy=\lambda^2\rho^2 y,\qquad x\in[a,b]\subset\mathbb{R},$$
where $\lambda^2$ is a spectral parameter, $r$ and $\rho$ are positive functions while $p$ and $q$ are complex-valued ones. An asymptotic representation for the fundamental system of solutions with respect to the spectral parameter $\lambda\to\infty$ is obtained in the half-planes $\operatorname{Im}\lambda\geqslant\operatorname{const}$ and $\operatorname{Im}\lambda\leqslant\operatorname{const}$ under the following conditions on the coefficients:
$$p\in L_1[a,b],\quad q\in W_2^{-1}[a,b],\quad\rho,r\in W_1^1[a,b],\quad\rho'u,r'u,pu\in L_1[a,b], \quad\text{where}\quad u=\int q~dx,$$
and the antiderivative is understood in the sense of distributions.
Key words: Sturm–Liouville equation, asymptotics of solutions with large parameter.
Funding agency Grant number
Russian Science Foundation 17-11-01215
Received: 22.06.2018
English version:
Moscow University Mathematics Bulletin, 2019, Volume 74, Issue 1, Pages 38–41
DOI: https://doi.org/10.3103/S002713221901008X
Bibliographic databases:
Document Type: Article
UDC: 517.928 + 517.984
Language: Russian
Citation: V. E. Vladykina, “Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 1, 57–61; Moscow University Mathematics Bulletin, 74:1 (2019), 38–41
Citation in format AMSBIB
\Bibitem{Vla19}
\by V.~E.~Vladykina
\paper Asymptotics of fundamental solutions to Sturm--Liouville problem with respect to spectral parameter
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2019
\issue 1
\pages 57--61
\mathnet{http://mi.mathnet.ru/vmumm602}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3943135}
\zmath{https://zbmath.org/?q=an:1422.34116}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2019
\vol 74
\issue 1
\pages 38--41
\crossref{https://doi.org/10.3103/S002713221901008X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000465628800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064911874}
Linking options:
  • https://www.mathnet.ru/eng/vmumm602
  • https://www.mathnet.ru/eng/vmumm/y2019/i1/p57
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :23
    References:31
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024