|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2019, Number 1, Pages 57–61
(Mi vmumm602)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short notes
Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter
V. E. Vladykina Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We consider the Sturm–Liouville equation $$-(r^2y')'+py'+qy=\lambda^2\rho^2 y,\qquad x\in[a,b]\subset\mathbb{R},$$ where $\lambda^2$ is a spectral parameter, $r$ and $\rho$ are positive functions while $p$ and $q$ are complex-valued ones. An asymptotic representation for the fundamental system of solutions with respect to the spectral parameter $\lambda\to\infty$ is obtained in the half-planes $\operatorname{Im}\lambda\geqslant\operatorname{const}$ and $\operatorname{Im}\lambda\leqslant\operatorname{const}$ under the following conditions on the coefficients: $$p\in L_1[a,b],\quad q\in W_2^{-1}[a,b],\quad\rho,r\in W_1^1[a,b],\quad\rho'u,r'u,pu\in L_1[a,b], \quad\text{where}\quad u=\int q~dx,$$ and the antiderivative is understood in the sense of distributions.
Key words:
Sturm–Liouville equation, asymptotics of solutions with large parameter.
Received: 22.06.2018
Citation:
V. E. Vladykina, “Asymptotics of fundamental solutions to Sturm–Liouville problem with respect to spectral parameter”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 1, 57–61; Moscow University Mathematics Bulletin, 74:1 (2019), 38–41
Linking options:
https://www.mathnet.ru/eng/vmumm602 https://www.mathnet.ru/eng/vmumm/y2019/i1/p57
|
Statistics & downloads: |
Abstract page: | 183 | Full-text PDF : | 23 | References: | 31 | First page: | 8 |
|