Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2019, Number 1, Pages 46–51 (Mi vmumm599)  

This article is cited in 7 scientific papers (total in 7 papers)

Mechanics

Stabilization of steady motions for systems with redundant coordinates

A. Ya. Krasinskiya, A. N. Il'inab, È. M. Krasinskayac

a Moscow State University of Food Production
b Moscow Aviation Institute
c Bauman Moscow State Technical University
Full-text PDF (220 kB) Citations (7)
References:
Abstract: The stability and stabilization problem of steady motions for mechanical systems with nonlinear geometric constraints is considered. The steady state information is assumed to be incomplete. Redundant coordinates, Routh's variables and Shul'gin's equations of motion are used. The set of cyclical coordinates is divided into two parts for impulses (Routh variables) and controlled coordinates (Lagrange variables). The rest of coordinates is assumed to be uncontrolled. The characteristic equation for the perturbed motion has zero roots. Its number is equal to the number of impulses plus the number of redundant coordinates. The stabilization theorem is proved for three variants of the measurement vector. The control law and the observing system coefficients can be determined by solving the Krasovskiy linear-quadratic problems for the controlled subsystem. This system does not depend on the critical variables (redundant coordinates and impulses). The stability of the complete nonlinear system follows from the reduction to Lyapunov's special case and Malkin's stability theorem under time-varying perturbations.
Key words: steady motion, redundant coordinates, Shul'gin's equations, Routh's variables, stabilization, incomplete information.
Received: 10.01.2018
English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2019, Volume 74, Issue 1, Pages 14–19
DOI: https://doi.org/10.3103/S0027133019010035
Bibliographic databases:
Document Type: Article
UDC: 531.36
Language: Russian
Citation: A. Ya. Krasinskiy, A. N. Il'ina, È. M. Krasinskaya, “Stabilization of steady motions for systems with redundant coordinates”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019, no. 1, 46–51; Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 74:1 (2019), 14–19
Citation in format AMSBIB
\Bibitem{KraIliKra19}
\by A.~Ya.~Krasinskiy, A.~N.~Il'ina, \`E.~M.~Krasinskaya
\paper Stabilization of steady motions for systems with redundant coordinates
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2019
\issue 1
\pages 46--51
\mathnet{http://mi.mathnet.ru/vmumm599}
\transl
\jour Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin
\yr 2019
\vol 74
\issue 1
\pages 14--19
\crossref{https://doi.org/10.3103/S0027133019010035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000465629200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064950487}
Linking options:
  • https://www.mathnet.ru/eng/vmumm599
  • https://www.mathnet.ru/eng/vmumm/y2019/i1/p46
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:159
    Full-text PDF :40
    References:21
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024