Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2018, Number 6, Pages 30–36 (Mi vmumm581)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Parseval frames of serial shifts of a function in spaces of trigonometric polynomials

A. V. Fadeeva

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (275 kB) Citations (1)
References:
Abstract: The work establishes possible dimensions of Parseval's frame in the space of trigonometric polynomials of the form $T_Q(x)=\sum\limits_{k\in Q}c_k e^{ikx}$ consisting of serial translations of a polynomial ($c_k\in\mathbb C$, where the finite set $Q\subset\mathbb Z$). Sufficient and necessary conditions for a system of serial translations to be a Parseval's frame are also established there. The result is applied to some particular cases.
Key words: the Parseval's frame, space of trigonometric polynomials, shifts of functions.
Received: 27.04.2018
English version:
Moscow University Mathematics Bulletin, 2018, Volume 73, Issue 6, Pages 239–244
DOI: https://doi.org/10.3103/S0027132218060049
Bibliographic databases:
Document Type: Article
UDC: 517.98, 517.51
Language: Russian
Citation: A. V. Fadeeva, “Parseval frames of serial shifts of a function in spaces of trigonometric polynomials”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 6, 30–36; Moscow University Mathematics Bulletin, 73:6 (2018), 239–244
Citation in format AMSBIB
\Bibitem{Fad18}
\by A.~V.~Fadeeva
\paper Parseval frames of serial shifts of a function in spaces of trigonometric polynomials
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2018
\issue 6
\pages 30--36
\mathnet{http://mi.mathnet.ru/vmumm581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920731}
\zmath{https://zbmath.org/?q=an:1420.42019}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2018
\vol 73
\issue 6
\pages 239--244
\crossref{https://doi.org/10.3103/S0027132218060049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460777100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062511554}
Linking options:
  • https://www.mathnet.ru/eng/vmumm581
  • https://www.mathnet.ru/eng/vmumm/y2018/i6/p30
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024