Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2018, Number 5, Pages 29–46 (Mi vmumm572)  

This article is cited in 13 scientific papers (total in 13 papers)

Mechanics

The general mathematical theory of plasticity and the Ilyushin postulates of macroscopic definahility and isotropy

V. G. Zubchaninov

Tver State Technical University
References:
Abstract: The physical laws of the connection between stresses and strains of the general modern theory of the processes of elastoplastic deformation and its postulates of macroscopic definiteness and isotropy of initially isotropic continuous media are considered and analyzed. The foundations of this theory in continuum mechanics were developed in the middle of 20th century by the outstanding Russian mechanicist, corresponding member of the Russian Academy of Sciences, academician of Russian academy of rocket and artillery sciences, head of the department of the theory of elasticity of Moscow university of M. V. Lomonosov, by A. A. Ilyushin. His theory of small elastoplastic deformations under simple loading became a generalization of Genky's deformation theory of flow, and his theory of elastoplastic processes which are close to simple loading became a generalization of flow theory of Saint-Venant–Mises for reinforcing medium. In these works, the concepts of simple and complex loading processes, the concepts of directing deviation tensors of form change were introduced. The Bridgman's law of elastic variation of the volume and the universal laws of the single curve of hardening of Roche and Eichinger under simple loading, and the universal law of hardening of Odquist for plastic deformations generalized to strengthening elastic-plastic media for processes close to simple loading, but without taking into account the specific history of deformation for trajectories of small and medium curvature were adopted. The question of the possibility of applying the postulate of isotropy to the evaluation of the influence of parameters of the form of the stress-strain state arising due to deformation anisotropy when the internal structure of materials changes is discussed. Also, the question of the legitimacy of representing symmetric tensors of the second rank of stresses and deformations in the form of vectors of the coordinate linear Euclidean six-dimensional space is discussed. The corresponding principle of the identity of tensors and vectors is proposed.
Key words: elasticity, plasticity, processes of complex loading and deformation, complex stress-strain state, isotropy postulate.
Received: 03.11.2017
English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2018, Volume 73, Issue 5, Pages 101–116
DOI: https://doi.org/10.3103/S0027133018050011
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: V. G. Zubchaninov, “The general mathematical theory of plasticity and the Ilyushin postulates of macroscopic definahility and isotropy”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 5, 29–46; Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 73:5 (2018), 101–116
Citation in format AMSBIB
\Bibitem{Zub18}
\by V.~G.~Zubchaninov
\paper The general mathematical theory of plasticity and the Ilyushin postulates of macroscopic definahility and isotropy
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2018
\issue 5
\pages 29--46
\mathnet{http://mi.mathnet.ru/vmumm572}
\zmath{https://zbmath.org/?q=an:1409.74011}
\transl
\jour Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin
\yr 2018
\vol 73
\issue 5
\pages 101--116
\crossref{https://doi.org/10.3103/S0027133018050011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000449935100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056116195}
Linking options:
  • https://www.mathnet.ru/eng/vmumm572
  • https://www.mathnet.ru/eng/vmumm/y2018/i5/p29
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :194
    References:46
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024