|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2018, Number 4, Pages 60–62
(Mi vmumm564)
|
|
|
|
Short notes
Optimal control, everywhere dense torus winding, and Wolstenholme primes
D. D. Kiselev All-Russian Academy of International Trade, Moscow
Abstract:
In this paper, using Galois theory and the knowledge of the Wolstenholme primes distribution, we construct an optimal control problem where the control runs an everywhere dense winding of a $k$-dimensional torus for arbitrary natural $k\leqslant 249~998~919$ given in advance.
Key words:
torus winding, Galois theory, Wolstenholme primes.
Received: 04.10.2017
Citation:
D. D. Kiselev, “Optimal control, everywhere dense torus winding, and Wolstenholme primes”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, no. 4, 60–62; Moscow University Mathematics Bulletin, 73:4 (2018), 162–163
Linking options:
https://www.mathnet.ru/eng/vmumm564 https://www.mathnet.ru/eng/vmumm/y2018/i4/p60
|
|