|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2012, Number 6, Pages 51–55
(Mi vmumm548)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Short notes
Short exponential sums with a non-integer power of a natural number
P. Z. Rakhmonov Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
An estimate for short exponential sums $$S_c(\alpha ;x,y)=\sum_{x-y<n\le x}e(\alpha [n^c])$$ is obtained for $y\ge x^{\frac{1}{2}}\ln^A x$, $x^{1-c}y^{-1}\ln^Ax\le|\alpha|\le 0,5$, $c>2$ and $\|c\|\ge\delta$ where $A$ is a fixed positive number and $\delta=\delta (x,c,A)=\left(2^{[c]+1}-1\right)(A+2,5)\cdot\frac{\ln\ln x}{\ln x}$.
Key words:
short exponential sum, Van der Corput's method, exponential integral, nontrivial estimate.
Received: 28.05.2012
Citation:
P. Z. Rakhmonov, “Short exponential sums with a non-integer power of a natural number”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 6, 51–55; Moscow University Mathematics Bulletin, 68:1 (2013), 65–68
Linking options:
https://www.mathnet.ru/eng/vmumm548 https://www.mathnet.ru/eng/vmumm/y2012/i6/p51
|
|