Abstract:
Two approaches are proposed to determine an initial approximation for the coefficients of an expansion of the solution to a Cauchy problem for ordinary differential equations in the form of series in shifted Chebyshev polynomials of the first kind. This approximation is used in an analytical method to solve ordinary differential equations using orthogonal expansions.
Citation:
O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Calculation of expansion coefficients of series in Chebyshev polynomials for a solution to a Cauchy problem”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 5, 24–30; Moscow University Mathematics Bulletin, 67:5-6 (2012), 211–216
\Bibitem{AruVolZal12}
\by O.~B.~Arushanyan, N.~I.~Volchenskova, S.~F.~Zaletkin
\paper Calculation of expansion coefficients of series in Chebyshev polynomials for a solution to a Cauchy problem
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2012
\issue 5
\pages 24--30
\mathnet{http://mi.mathnet.ru/vmumm526}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3076495}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2012
\vol 67
\issue 5-6
\pages 211--216
\crossref{https://doi.org/10.3103/S0027132212050051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870903414}
Linking options:
https://www.mathnet.ru/eng/vmumm526
https://www.mathnet.ru/eng/vmumm/y2012/i5/p24
This publication is cited in the following 11 articles:
O. B. Arushanyan, S. F. Zaletkin, “Approximate integration of the canonical systems of second order ordinary differential equations with the use of Chebyshev series with error estimation for solution and its derivative”, Moscow University Mathematics Bulletin, 77:4 (2022), 191–198
S. F. Zaletkin, “Approximate integration of ordinary differential equations using Chebyshev series with precision control”, Math. Models Comput. Simul., 15:1 (2023), 34–46
O. B. Arushanyan, S. F. Zaletkin, “Applying the method of integration of ordinary differential equations based on the Chebyshev series to the restricted plane circular three-body problem”, Moscow University Mathematics Bulletin, 76:3 (2021), 118–122
O. B. Arushanyan, S. F. Zaletkin, “On the computation of approximate solution to ordinary differential equations by the Chebyshev series method and estimation of its error”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 75:5 (2020), 204–208
O. B. Arushanyan, S. F. Zaletkin, “On some analytic method for approximate solution of systems of second order ordinary differential equations”, Moscow University Mathematics Bulletin, 74:3 (2019), 127–130
O. B. Arushanyan, S. F. Zaletkin, “Justification of some approach to implementation of orthogonal expansions for approximate integration of canonical systems of second order
ordinary differential equations”, Moscow University Mathematics Bulletin, 73:3 (2018), 111–115
O. B. Arushanyan, S. F. Zaletkin, “Solvability of a system of equations for the Fourier-Chebyshev coefficients when solving ordinary differential equations by the Chebyshev series method”, Moscow University Mathematics Bulletin, 72:5 (2017), 213–216
O. B. Arushanyan, S. F. Zaletkin, “The use of Chebyshev series for approximate analytic solution of ordinary differential equations”, Moscow University Mathematics Bulletin, 71:5 (2016), 212–215
O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Application of Chebyshev series to integration of ordinary differential equations with rapidly growing solutions”, Moscow University Mathematics Bulletin, 70:5 (2015), 237–240
O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “On an approach to integration of ordinary differential equations with the use of series”, Moscow University Mathematics Bulletin, 69:6 (2014), 272–274
O. B. Arushanyan, N. I. Volchenskova, S. F. Zaletkin, “Primenenie ryadov Chebysheva dlya integrirovaniya obyknovennykh differentsialnykh uravnenii”, Sib. elektron. matem. izv., 11 (2014), 517–531