|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2012, Number 3, Pages 51–55
(Mi vmumm498)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short notes
Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type
A. V. Petukhovab a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Jacobs University, Bremen
Abstract:
Let $\mathfrak g$ be a semisimple Lie algebra and $\mathfrak k$ be a reductive subalgebra in $\mathfrak g$. We say that a $\mathfrak g$-module $M$ is a $(\mathfrak g,\mathfrak k)$-module if $M$, considered as a $\mathfrak k$-module, is a direct sum of finite-dimensional $\mathfrak k$-modules. We say that a $(\mathfrak g,\mathfrak k)$-module $M$ is of finite type if all $\mathfrak k$-isotypic components of $M$ are finite-dimensional. In this article we prove that any simple $(\mathfrak g,\mathfrak k)$-module of finite type is holonomic. To a simple $\mathfrak g$-module $M$ one assigns invariants $\mathrm{V}(M)$, $\mathcal V(\operatorname{Loc}M)$ и $\mathrm{V}(M)$ reflecting the "directions of growth of $M$". We also prove that, for a given pair $(\mathfrak g,\mathfrak k)$, the set of possible invariants is finite.
Key words:
$(\mathfrak g,\mathfrak k)$-module, coadjoint orbit, null-cone.
Received: 20.04.2011
Citation:
A. V. Petukhov, “Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 3, 51–55; Moscow University Mathematics Bulletin, 67:3 (2012), 125–128
Linking options:
https://www.mathnet.ru/eng/vmumm498 https://www.mathnet.ru/eng/vmumm/y2012/i3/p51
|
|