Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2012, Number 3, Pages 51–55 (Mi vmumm498)  

This article is cited in 2 scientific papers (total in 2 papers)

Short notes

Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type

A. V. Petukhovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Jacobs University, Bremen
Full-text PDF (245 kB) Citations (2)
References:
Abstract: Let $\mathfrak g$ be a semisimple Lie algebra and $\mathfrak k$ be a reductive subalgebra in $\mathfrak g$. We say that a $\mathfrak g$-module $M$ is a $(\mathfrak g,\mathfrak k)$-module if $M$, considered as a $\mathfrak k$-module, is a direct sum of finite-dimensional $\mathfrak k$-modules. We say that a $(\mathfrak g,\mathfrak k)$-module $M$ is of finite type if all $\mathfrak k$-isotypic components of $M$ are finite-dimensional. In this article we prove that any simple $(\mathfrak g,\mathfrak k)$-module of finite type is holonomic. To a simple $\mathfrak g$-module $M$ one assigns invariants $\mathrm{V}(M)$, $\mathcal V(\operatorname{Loc}M)$ и $\mathrm{V}(M)$ reflecting the "directions of growth of $M$". We also prove that, for a given pair $(\mathfrak g,\mathfrak k)$, the set of possible invariants is finite.
Key words: $(\mathfrak g,\mathfrak k)$-module, coadjoint orbit, null-cone.
Received: 20.04.2011
English version:
Moscow University Mathematics Bulletin, 2012, Volume 67, Issue 3, Pages 125–128
DOI: https://doi.org/10.3103/S0027132212030084
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: A. V. Petukhov, “Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012, no. 3, 51–55; Moscow University Mathematics Bulletin, 67:3 (2012), 125–128
Citation in format AMSBIB
\Bibitem{Pet12}
\by A.~V.~Petukhov
\paper Supports of $(\mathfrak g,\mathfrak k)$-modules of finite type
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2012
\issue 3
\pages 51--55
\mathnet{http://mi.mathnet.ru/vmumm498}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3026844}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2012
\vol 67
\issue 3
\pages 125--128
\crossref{https://doi.org/10.3103/S0027132212030084}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84864813044}
Linking options:
  • https://www.mathnet.ru/eng/vmumm498
  • https://www.mathnet.ru/eng/vmumm/y2012/i3/p51
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024