Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2024, Number 1, Pages 3–10
DOI: https://doi.org/10.55959/vmumm4583
(Mi vmumm4583)
 

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Exact estimates for higher order derivatives in Sobolev spaces

T. A. Garmanovaab, I. A. Sheipakab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow
b Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (399 kB) Citations (1)
References:
Abstract: The paper describes the splines $Q_{n,k}(x,a)$, which define the relations $y^{(k)}(a)=\int_0^1 y^{(n)}(x)Q^{(n)}_{n,k}(x,a)dx$ for an arbitrary point $a\in(0;1)$ and an arbitrary function $y\in\mathring{W}^n_p[0;1]$. The connection of the minimization of the norm $\|Q^{(n)}_{n,k}\|_{L_{p'}[0;1]}$ ($1/ p+1/p'=1$) by parameter $a$ with the problem of best estimates for derivatives $|y^{(k)}(a)|\leqslant A_{n,k,p}(a)\|y^{(n)}\|_{L_p[0;1]}$, and also with the problem of finding the exact embedding constants of the Sobolev space $\mathring{W}^n_p[0;1]$ into the space $\mathring{W}^k_\infty[0;1]$, $n\in\mathbb{N}$, $0\leqslant k\leqslant n-1$. Exact embedding constants are found for all $n\in\mathbb{N}$, $k=n-1$ for $p=1$ and for $p=\infty$.
Key words: estimates of derivatives, Kolmogorov type inequalities, Sobolev spaces, embedding theorems, approximation by polynomials.
Funding agency Grant number
Foundation for the Advancement of Theoretical Physics and Mathematics BASIS
Russian Science Foundation 20-11-20261
The results of Sections 2 and 3 are obtained under support by the Foundation Basis, and the results of Sections 4 and 5 are obtained under the support by the Russian Science Foundation, project no. 20-11-20261.
Received: 31.03.2023
English version:
Moscow University Mathematics Bulletin, 2024, Volume 79, Issue 1, Pages 1–10
DOI: https://doi.org/10.3103/S0027132224700013
Bibliographic databases:
Document Type: Article
UDC: 517.518.23
Language: Russian
Citation: T. A. Garmanova, I. A. Sheipak, “Exact estimates for higher order derivatives in Sobolev spaces”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2024, no. 1, 3–10; Moscow University Mathematics Bulletin, 79:1 (2024), 1–10
Citation in format AMSBIB
\Bibitem{GarShe24}
\by T.~A.~Garmanova, I.~A.~Sheipak
\paper Exact estimates for higher order derivatives in Sobolev spaces
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2024
\issue 1
\pages 3--10
\mathnet{http://mi.mathnet.ru/vmumm4583}
\crossref{https://doi.org/10.55959/vmumm4583}
\elib{https://elibrary.ru/item.asp?id=62487619}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2024
\vol 79
\issue 1
\pages 1--10
\crossref{https://doi.org/10.3103/S0027132224700013}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4583
  • https://www.mathnet.ru/eng/vmumm/y2024/i1/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:95
    Full-text PDF :55
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024