Abstract:
The stationary Schrödinger equation is studied in a domain bounded by two confocal ellipses and in its coverings. The order of dependence of the Laplace operator eigenvalues on sufficiently small distance between the foci is obtained. Coefficients of the power series expansion of said eigenvalues are calculated up to and including the square of half the focal distance.
Citation:
M. A. Nikulin, “Spectrum of the Schrödinger operator in an elliptical ring cover”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 5, 22–32; Moscow University Mathematics Bulletin, 78:5 (2023), 230–243
\Bibitem{Nik23}
\by M.~A.~Nikulin
\paper Spectrum of the Schr\"odinger operator in an elliptical ring cover
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 5
\pages 22--32
\mathnet{http://mi.mathnet.ru/vmumm4564}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-64-5-4}
\elib{https://elibrary.ru/item.asp?id=54669689}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2023
\vol 78
\issue 5
\pages 230--243
\crossref{https://doi.org/10.3103/S0027132223050042}
Linking options:
https://www.mathnet.ru/eng/vmumm4564
https://www.mathnet.ru/eng/vmumm/y2023/i5/p22
This publication is cited in the following 1 articles:
M. A. Nikulin, Th. Yu. Popelensky, A. I. Shafarevich, “Asymptotic behaviour of energy levels of a quantum free particle in an elliptic sector”, Phys. Scr., 99:1 (2024), 015207