Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2023, Number 4, Pages 61–64
DOI: https://doi.org/10.55959/MSU0579-9368-1-64-4-11
(Mi vmumm4557)
 

Short notes

Generalized Cesaro formulas and third order compatibility equations

S. A. Lur'eab, P. A. Belovc

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Aviation Institute (National Research University)
c Institute of Applied Mechanics of Russian Academy of Sciences, Moscow
References:
Abstract: We consider the classical problem of elasticity theory concerning the conditions of compatibility deformations, which ensure the determination of a continuous field of displacements of an elastic body by the deformation field. We construct generalized Cesaro representations that allow one to define the displacement field through integro-differential operators on the components of the strain tensor deviator with an accuracy up to quadratic polynomials. It has been established that the quadratures both for the pseudovector of local rotations and for the volume change deformation are completely determined by the deformation deviator field. We present the conditions for the existence of the listed quadratures, which are written in the form of five third differential order coincidence equations with respect to the five components of the strain tensor-deviator.
Key words: kinematic model, Cauchy relations, Cesaro formulas, Saint-Venant's compatibility equations, third-order compatibility equations.
Funding agency Grant number
Russian Science Foundation 22–79–10228
Received: 10.03.2023
English version:
Moscow University Måchanics Bulletin, 2023, Volume 78, Issue 4, Pages 110–113
DOI: https://doi.org/10.3103/S0027133023040040
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: S. A. Lur'e, P. A. Belov, “Generalized Cesaro formulas and third order compatibility equations”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 4, 61–64; Moscow University Måchanics Bulletin, 78:4 (2023), 110–113
Citation in format AMSBIB
\Bibitem{LurBel23}
\by S.~A.~Lur'e, P.~A.~Belov
\paper Generalized Cesaro formulas and third order compatibility equations
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 4
\pages 61--64
\mathnet{http://mi.mathnet.ru/vmumm4557}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-64-4-11}
\elib{https://elibrary.ru/item.asp?id=54354443}
\transl
\jour Moscow University Måchanics Bulletin
\yr 2023
\vol 78
\issue 4
\pages 110--113
\crossref{https://doi.org/10.3103/S0027133023040040}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4557
  • https://www.mathnet.ru/eng/vmumm/y2023/i4/p61
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025