Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2023, Number 4, Pages 57–60
DOI: https://doi.org/10.55959/MSU0579-9368-1-64-4-10
(Mi vmumm4556)
 

Short notes

Reconstruction of the Schrödinger operator with a singular potential on half-line by its prescribed essential spectrum

G. A. Agafonkinab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
References:
Abstract: Singular Schrodinger operators on $L^2([0,+\infty))$ with the potential of the form $\sum_{k=1}^{+\infty}a_k\delta_{x_k}$, where $x_k~{>}~0$ and $a_k~{\in}~\mathbb{R}$, are considered. It is constructively proved that every closed semibounded set $S\subset\mathbb{R}$ can be the essential spectrum of such operator.
Key words: Schrödinger operator, essential spectrum, Weyl theorem.
Funding agency Grant number
Russian Science Foundation 20-11-20261
Received: 26.10.2022
English version:
Moscow University Mathematics Bulletin, 2023, Volume 78, Issue 4, Pages 203–206
DOI: https://doi.org/10.3103/S0027132223040022
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: G. A. Agafonkin, “Reconstruction of the Schrödinger operator with a singular potential on half-line by its prescribed essential spectrum”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 4, 57–60; Moscow University Mathematics Bulletin, 78:4 (2023), 203–206
Citation in format AMSBIB
\Bibitem{Aga23}
\by G.~A.~Agafonkin
\paper Reconstruction of the Schr\"odinger operator with a singular potential on half-line by its prescribed essential spectrum
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 4
\pages 57--60
\mathnet{http://mi.mathnet.ru/vmumm4556}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-64-4-10}
\elib{https://elibrary.ru/item.asp?id=54354442}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2023
\vol 78
\issue 4
\pages 203--206
\crossref{https://doi.org/10.3103/S0027132223040022}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4556
  • https://www.mathnet.ru/eng/vmumm/y2023/i4/p57
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024