Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2023, Number 4, Pages 53–57
DOI: https://doi.org/10.55959/MSU0579-9368-1-64-4-9
(Mi vmumm4555)
 

Short notes

Invariant sums of products of differentials

F. M. Malyshev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: Based on the method proposed for solving the so-called $(r, s)$-systems of linear equations, it is proved that the orders of homogeneous invariant differential operators $n$ of smooth real functions of one variable take values from $n$ to $\frac{n(n+1)}2$, and the dimension of the space of all such operators does not exceed $n!$. A classification of invariant differential operators of order $n+s$ is obtained for $s = 1, 2, 3, 4$, and for $n=4$ for all orders from 4 to 10. Homogeneous invariant differential operators of the smallest order $n$ and the largest order $\frac{n(n+1)}{2}$ are given, respectively, by the product of the $n$ first differentials $(s=0)$ and the Wronskian $(s=(n-1)n/2)$. The existence of nonzero homogeneous invariant differential operators of order $n+s$ for $s<\frac{1+\sqrt{5}}{2}(n-1)$ is proved.
Key words: derivative, differential, system of linear equations, simplex, invariant differential operator.
Received: 19.04.2023
English version:
Moscow University Mathematics Bulletin, 2023, Volume 78, Issue 4, Pages 198–202
DOI: https://doi.org/10.3103/S002713222304006X
Bibliographic databases:
Document Type: Article
UDC: 514.763
Language: Russian
Citation: F. M. Malyshev, “Invariant sums of products of differentials”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 4, 53–57; Moscow University Mathematics Bulletin, 78:4 (2023), 198–202
Citation in format AMSBIB
\Bibitem{Mal23}
\by F.~M.~Malyshev
\paper Invariant sums of products of differentials
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 4
\pages 53--57
\mathnet{http://mi.mathnet.ru/vmumm4555}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-64-4-9}
\elib{https://elibrary.ru/item.asp?id=54354441}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2023
\vol 78
\issue 4
\pages 198--202
\crossref{https://doi.org/10.3103/S002713222304006X}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4555
  • https://www.mathnet.ru/eng/vmumm/y2023/i4/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024