Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2023, Number 4, Pages 22–29
DOI: https://doi.org/10.55959/MSU0579-9368-1-64-4-4
(Mi vmumm4550)
 

This article is cited in 2 scientific papers (total in 2 papers)

Mathematics

On the computation complexity of the systems of finite Abelian group elements

V. V. Kocherginab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b HSE University, Moscow
Full-text PDF (258 kB) Citations (2)
References:
Abstract: The computation compelxity of the systems of the finite Abelian group elements is studied in the paper. The complexity of computation means the minimal number of group operations required to calculate elements of the system over the basis elements, all results of intermediate calculations may be used multiple times. We define the Shannon function $L(n, m)$ as the maximal complexity of $m$-elements system group, the maximum is taken over all Abelian groups of order less than $n,$ over all their bases, over all computed systems. It is stated that if $m = o(\log \log n)$ for $n \to \infty$, than the asymptotic equality $L(n,m) \sim \log_2 n$ is valid. In addition, the asymptotic of the maximal possible difference of computation complexity of the systems of a finite Abelian group elements and the computation complexity of a monomial system corresponding to the representation of these elements over basis elements is obtained under the same conditions.
Key words: finite Abelian group, computational complexity, addition chains, vectorial addition chains, Bellman's problem, Pippenger's problem.
Funding agency Grant number
Moscow Center of Fundamental and Applied Mathematics 075-15-2022-284
Received: 17.02.2023
English version:
Moscow University Mathematics Bulletin, 2023, Volume 78, Issue 4, Pages 179–187
DOI: https://doi.org/10.3103/S0027132223040034
Bibliographic databases:
Document Type: Article
UDC: 519.71
Language: Russian
Citation: V. V. Kochergin, “On the computation complexity of the systems of finite Abelian group elements”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 4, 22–29; Moscow University Mathematics Bulletin, 78:4 (2023), 179–187
Citation in format AMSBIB
\Bibitem{Koc23}
\by V.~V.~Kochergin
\paper On the computation complexity of the systems of finite Abelian group elements
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 4
\pages 22--29
\mathnet{http://mi.mathnet.ru/vmumm4550}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-64-4-4}
\elib{https://elibrary.ru/item.asp?id=54354436}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2023
\vol 78
\issue 4
\pages 179--187
\crossref{https://doi.org/10.3103/S0027132223040034}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4550
  • https://www.mathnet.ru/eng/vmumm/y2023/i4/p22
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025