Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2023, Number 2, Pages 63–67
DOI: https://doi.org/10.55959/MSU0579-9368-1-64-2-8
(Mi vmumm4531)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short notes

$\alpha$-monotone sequences and the Lorentz theorem

E. D. Alferovaab, M. I. Dyachenkoab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics
Full-text PDF (234 kB) Citations (1)
References:
Abstract: Properties of $\alpha$-monotone sequences are studied. A relationship between $\alpha$-monotonicity and the limiting rate of change of coefficients is revealed. Operations on sequences that do not lead out of the class $M_\alpha$ are discussed. An analogue of the Lorentz theorem for trigonometric series with coefficients from the classes $M_\alpha$ for $0 <\alpha <1$ is proved.
Key words: monotone coefficients, fractional monotonicity coefficients, cosine series, trigono- metric series, Lorenz theorem.
Funding agency Grant number
Russian Science Foundation 22–21–00545
Received: 06.07.2022
English version:
Moscow University Mathematics Bulletin, 2023, Volume 78, Issue 2, Pages 95–99
DOI: https://doi.org/10.3103/S002713222302002X
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: E. D. Alferova, M. I. Dyachenko, “$\alpha$-monotone sequences and the Lorentz theorem”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 2, 63–67; Moscow University Mathematics Bulletin, 78:2 (2023), 95–99
Citation in format AMSBIB
\Bibitem{AlfDya23}
\by E.~D.~Alferova, M.~I.~Dyachenko
\paper $\alpha$-monotone sequences and the Lorentz theorem
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 2
\pages 63--67
\mathnet{http://mi.mathnet.ru/vmumm4531}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-64-2-8}
\zmath{https://zbmath.org/?q=an:7711509}
\elib{https://elibrary.ru/item.asp?id=50506493}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2023
\vol 78
\issue 2
\pages 95--99
\crossref{https://doi.org/10.3103/S002713222302002X}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4531
  • https://www.mathnet.ru/eng/vmumm/y2023/i2/p63
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :79
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024