Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2023, Number 2, Pages 3–11
DOI: https://doi.org/10.55959/MSU0579-9368-1-64-2-1
(Mi vmumm4524)
 

Mathematics

Comparison of a pure greedy algorithm with a pure greedy one in a pair of dictionaries

A. S. Orlova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: In this paper, we compare the standard Pure Greedy Algorithm (PGA) with its modification — PGA in a pair of dictionaries. We show that PGA in a pair of dictionaries converges in certain cases in a finite number of steps, while the standard PGA for each individual dictionary has non-zero remainders at each step; at the same time, in certain cases the opposite holds true. Similarly, for the comparison of PGA in a pair of dictionaries vs standard PGA in a union of these dictionaries both situations are possible. For the convergence rate, we also prove that in certain cases PGA in a pair of dictionaries can be faster, and in certain cases can be slower than the standard PGA in individual dictionaries.
Key words: pure greedy algorithm, pure greedy algorithm in a pair of dictionaries, convergence, convergence rate.
Received: 18.03.2022
English version:
Moscow University Mathematics Bulletin, 2023, Volume 78, Issue 2, Pages 57–66
DOI: https://doi.org/10.3103/S0027132223020055
Bibliographic databases:
Document Type: Article
UDC: 517.518.36
Language: Russian
Citation: A. S. Orlova, “Comparison of a pure greedy algorithm with a pure greedy one in a pair of dictionaries”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 2, 3–11; Moscow University Mathematics Bulletin, 78:2 (2023), 57–66
Citation in format AMSBIB
\Bibitem{Orl23}
\by A.~S.~Orlova
\paper Comparison of a pure greedy algorithm with a pure greedy one in a pair of dictionaries
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2023
\issue 2
\pages 3--11
\mathnet{http://mi.mathnet.ru/vmumm4524}
\crossref{https://doi.org/10.55959/MSU0579-9368-1-64-2-1}
\zmath{https://zbmath.org/?q=an:7711506}
\elib{https://elibrary.ru/item.asp?id=50506477}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2023
\vol 78
\issue 2
\pages 57--66
\crossref{https://doi.org/10.3103/S0027132223020055}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4524
  • https://www.mathnet.ru/eng/vmumm/y2023/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024