Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2022, Number 5, Pages 31–39 (Mi vmumm4493)  

This article is cited in 9 scientific papers (total in 9 papers)

Mechanics

Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis

A. M. Stolina, A. V. Khokhlovbc

a Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
b Lomonosov Moscow State University, Institute of Mechanics
c North-Eastern Federal University named after M. K. Ammosov, Yakutsk
Full-text PDF (356 kB) Citations (9)
References:
Abstract: We formulate a nonlinear Maxwell-type constitutive equation for shear deformation of polymers in flow state or polymer viscoelastic melts and solutions which takes into account interaction of deformation process and structure evolution, namely, influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. The constitutive equation is governed by an increasing material function and six positive parameters. We reduce it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, stress and relative cross-links density) and prove existence and uniqueness of its equilibrium point and prove that its coordinates depend monotonically on every material parameter and on shear rate. We derive general equations for model flow curve and viscosity curve and prove that the first one increase and the second one decrease while the shear rate grows. Thus the model describes basic phenomena observed for simple shear flow of shear thinning fluids.
Key words: thixotropy, viscoelasticity, rheological model, polymeric systems, equilibrium point, flow curve, viscosity anomaly.
Funding agency Grant number
Russian Science Foundation 22-13-20056
The study is supported by the Russian Science Foundation, project no. 22-13-20056.
Received: 16.03.2022
English version:
Moscow University Mechanics Bulletin, 2022, Volume 77, Issue 5, Pages 127–135
DOI: https://doi.org/10.3103/S0027133022050065
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: A. M. Stolin, A. V. Khokhlov, “Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 5, 31–39; Moscow University Mechanics Bulletin, 77:5 (2022), 127–135
Citation in format AMSBIB
\Bibitem{StoKho22}
\by A.~M.~Stolin, A.~V.~Khokhlov
\paper Nonlinear model of shear flow of thixotropic viscoelastoplastic continua taking into account the evolution of the structure and its analysis
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2022
\issue 5
\pages 31--39
\mathnet{http://mi.mathnet.ru/vmumm4493}
\elib{https://elibrary.ru/item.asp?id=49553377}
\transl
\jour Moscow University Mechanics Bulletin
\yr 2022
\vol 77
\issue 5
\pages 127--135
\crossref{https://doi.org/10.3103/S0027133022050065}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4493
  • https://www.mathnet.ru/eng/vmumm/y2022/i5/p31
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:65
    Full-text PDF :27
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024