Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2013, Number 6, Pages 19–24 (Mi vmumm446)  

Mathematics

$\Delta$-graphs of polytopes in Bruns and Gubeladze $K$-theory

M. V. Prikhod'ko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: W. Bruns and J. Gubeladze introduced a new variant of algebraic $K$-theory, where \linebreak $K$-groups are additionally parametrized by polytopes of some type. In this paper we propose a notion of stable $E$-equivalence which can be used to calculate $K$-groups for high-dimensional polytopes. Polytopes which are stable $E$-equivalent have similar inner structures and isomorphic $K$-groups. In addition, for each polytope we define a $\Delta$-graph which is an oriented graph being invariant under a stable $E$-equivalence.
Key words: algebraic $K$-theory, balanced polytopes, $E$-equivalence.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-1410.2012.1
Received: 26.09.2012
English version:
Moscow University Mathematics Bulletin, 2013, Volume 68, Issue 6, Pages 281–285
DOI: https://doi.org/10.3103/S0027132213060041
Bibliographic databases:
Document Type: Article
UDC: 000
Language: Russian
Citation: M. V. Prikhod'ko, “$\Delta$-graphs of polytopes in Bruns and Gubeladze $K$-theory”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 6, 19–24; Moscow University Mathematics Bulletin, 68:6 (2013), 281–285
Citation in format AMSBIB
\Bibitem{Pri13}
\by M.~V.~Prikhod'ko
\paper $\Delta$-graphs of polytopes in Bruns and Gubeladze $K$-theory
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2013
\issue 6
\pages 19--24
\mathnet{http://mi.mathnet.ru/vmumm446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3228755}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2013
\vol 68
\issue 6
\pages 281--285
\crossref{https://doi.org/10.3103/S0027132213060041}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891671801}
Linking options:
  • https://www.mathnet.ru/eng/vmumm446
  • https://www.mathnet.ru/eng/vmumm/y2013/i6/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:60
    Full-text PDF :21
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024