Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2022, Number 1, Pages 38–47 (Mi vmumm4448)  

This article is cited in 3 scientific papers (total in 3 papers)

Mechanics

Variation principles of moment-membrane theory of shells

C. H. Sarkysyan

Shirak State University
Full-text PDF (926 kB) Citations (3)
References:
Abstract: In the present paper assumptions are formulated and on the basis of the moment theory of elasticity with independent fields of displacements and rotations general variation principle of Hu–Washizu type is established and basic equations with boundary conditions of the moment-membrane theory of shells are set out. For the moment-membrane theory of shells particular variation principles of Lagrange and Castigliano type are proved, equations of continuity of deformations of the middle surface of the shell are derived.
Key words: moment-membrane theory, shell, variation principles of Hu–Washizu, Lagrange, Castigliano, continuity equations.
Received: 16.02.2021
English version:
Moscow University Mechanics Bulletin, 2022, Volume 77, Issue 1, Pages 1–11
DOI: https://doi.org/10.3103/S0027133022010046
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: C. H. Sarkysyan, “Variation principles of moment-membrane theory of shells”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 1, 38–47; Moscow University Mechanics Bulletin, 77:1 (2022), 1–11
Citation in format AMSBIB
\Bibitem{Sar22}
\by C.~H.~Sarkysyan
\paper Variation principles of moment-membrane theory of shells
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2022
\issue 1
\pages 38--47
\mathnet{http://mi.mathnet.ru/vmumm4448}
\zmath{https://zbmath.org/?q=an:1501.74052}
\transl
\jour Moscow University Mechanics Bulletin
\yr 2022
\vol 77
\issue 1
\pages 1--11
\crossref{https://doi.org/10.3103/S0027133022010046}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4448
  • https://www.mathnet.ru/eng/vmumm/y2022/i1/p38
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :33
    References:28
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025