Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2022, Number 1, Pages 25–37 (Mi vmumm4447)  

Mathematics

Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures

N. N. Romanovskii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: For mappings from measure space $(X,\mu)$ to Banach space $(Y,|\cdot|_Y)$ we defined an analogous of Sobolev classes $W_p^r(X;Y)$, $r=1,2,\dots$, and also Sobolev–Slobodetsky classes $W_p^r$, $r\in [1,\infty)$, and some of their generalizations. We prove the embedding theorems into $L_q$ and into Orlizc classes and study some properties of Sobolev functions.
Key words: Sobolev spaces, embedding theorems, topological spaces.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00661
Received: 23.01.2021
English version:
Moscow University Mathematics Bulletin, 2022, Volume 77, Issue 1, Pages 27–40
DOI: https://doi.org/10.3103/S0027132222010053
Bibliographic databases:
Document Type: Article
UDC: 517.518+517.518.23
Language: Russian
Citation: N. N. Romanovskii, “Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 1, 25–37; Moscow University Mathematics Bulletin, 77:1 (2022), 27–40
Citation in format AMSBIB
\Bibitem{Rom22}
\by N.~N.~Romanovskii
\paper Sobolev embedding theorems and their generalizations for maps defined on topological spaces with measures
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2022
\issue 1
\pages 25--37
\mathnet{http://mi.mathnet.ru/vmumm4447}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4442659}
\zmath{https://zbmath.org/?q=an:7584499}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2022
\vol 77
\issue 1
\pages 27--40
\crossref{https://doi.org/10.3103/S0027132222010053}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4447
  • https://www.mathnet.ru/eng/vmumm/y2022/i1/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :48
    References:33
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024