Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2022, Number 1, Pages 19–25 (Mi vmumm4446)  

Mathematics

Robust utility maximization in terms of supermartingale measures

A. A. Farvazova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider a dual description of the optimal value of robust utility in the abstract model of the financial market $(\Omega,\mathscr{F},\mathrm{P},\mathscr{A}(x))$, where $\mathscr{A}(x)=x\mathscr{A}$, $x\geq 0$, is the set of the investor's terminal capitals corresponding to strategies with the initial capital $x$. The main result of the paper addresses the question of the transition in the definition of the dual problem from the polar of the set $\mathscr{A}$ to a narrower set of limit values of supermartingale densities.
Key words: utility maximization, robust utility, supermartingale measure.
Received: 22.01.2021
English version:
Moscow University Mathematics Bulletin, 2022, Volume 77, Issue 6, Pages 20–26
DOI: https://doi.org/10.3103/S0027132222010028
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Farvazova, “Robust utility maximization in terms of supermartingale measures”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 1, 19–25; Moscow University Mathematics Bulletin, 77:6 (2022), 20–26
Citation in format AMSBIB
\Bibitem{Far22}
\by A.~A.~Farvazova
\paper Robust utility maximization in terms of supermartingale measures
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2022
\issue 1
\pages 19--25
\mathnet{http://mi.mathnet.ru/vmumm4446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4442658}
\zmath{https://zbmath.org/?q=an:7584498}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2022
\vol 77
\issue 6
\pages 20--26
\crossref{https://doi.org/10.3103/S0027132222010028}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4446
  • https://www.mathnet.ru/eng/vmumm/y2022/i1/p19
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:110
    Full-text PDF :27
    References:36
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025