|
Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2022, Number 1, Pages 19–25
(Mi vmumm4446)
|
|
|
|
Mathematics
Robust utility maximization in terms of supermartingale measures
A. A. Farvazova Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Abstract:
We consider a dual description of the optimal value of robust utility in the abstract model of the financial market $(\Omega,\mathscr{F},\mathrm{P},\mathscr{A}(x))$, where $\mathscr{A}(x)=x\mathscr{A}$, $x\geq 0$, is the set of the investor's terminal capitals corresponding to strategies with the initial capital $x$. The main result of the paper addresses the question of the transition in the definition of the dual problem from the polar of the set $\mathscr{A}$ to a narrower set of limit values of supermartingale densities.
Key words:
utility maximization, robust utility, supermartingale measure.
Received: 22.01.2021
Citation:
A. A. Farvazova, “Robust utility maximization in terms of supermartingale measures”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2022, no. 1, 19–25; Moscow University Mathematics Bulletin, 77:6 (2022), 20–26
Linking options:
https://www.mathnet.ru/eng/vmumm4446 https://www.mathnet.ru/eng/vmumm/y2022/i1/p19
|
Statistics & downloads: |
Abstract page: | 110 | Full-text PDF : | 27 | References: | 36 | First page: | 4 |
|