Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 4, Pages 17–22 (Mi vmumm4411)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$

G. V. Kalacheva, S. Yu. Sadov

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Full-text PDF (760 kB) Citations (1)
References:
Abstract: The operator of convolution with a complex-valued integrable kernel in the space of integrable functions is considered; a necessary and sufficient condition for the existence of a maximizer, i.e., a norm one function that maximizes the norm of convolution, is given. Analysis of measurable solutions of Pexider's functional equation defined on subsets of positive measure in $\mathbb{R}^n$ plays the key role.
Key words: convolution operator, $L_1$ space, maximizer, Pexider's equation, Cauchy's functional equation, measurable solution.
Received: 13.12.2019
English version:
Moscow University Mathematics Bulletin, 2021, Volume 76, Issue 4, Pages 161–167
DOI: https://doi.org/10.3103/S0027132221040033
Bibliographic databases:
Document Type: Article
UDC: 517.51, 517.965
Language: Russian
Citation: G. V. Kalachev, S. Yu. Sadov, “An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 4, 17–22; Moscow University Mathematics Bulletin, 76:4 (2021), 161–167
Citation in format AMSBIB
\Bibitem{KalSad21}
\by G.~V.~Kalachev, S.~Yu.~Sadov
\paper An existence criterion for maximizers of convolution operators in $L_1(\mathbb{R}^n)$
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 4
\pages 17--22
\mathnet{http://mi.mathnet.ru/vmumm4411}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4339649}
\zmath{https://zbmath.org/?q=an:1478.39024}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2021
\vol 76
\issue 4
\pages 161--167
\crossref{https://doi.org/10.3103/S0027132221040033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000715811000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85118732771}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4411
  • https://www.mathnet.ru/eng/vmumm/y2021/i4/p17
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :25
    References:22
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024