Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 2, Pages 3–10 (Mi vmumm4384)  

Mathematics

Stability of a solution to one combined mixed problem for the Klein–Gordon–Fock equation with a variable coefficient

M. F. Abdukarimov

Lomonosov Moscow State University in Dushanbe
References:
Abstract: The paper studies one combined mixed problem for the Klein–Gordon–Fock equation with a variable coefficient. The solvability of the problem under consideration is proved. In addition to solvability, it is also substantiated that the solution to the studied mixed problem is stable with respect to an additive perturbation of the coefficient, as well as with respect to the boundary conditions and the right-hand side of the equation.
Key words: Klein–Gordon–Fock equation, mixed problem, solvability, stability, integral equation, Neumann series.
Received: 24.01.2020
English version:
Moscow University Mathematics Bulletin, 2021, Volume 76, Issue 2, Pages 45–52
DOI: https://doi.org/10.3103/S0027132221020029
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: M. F. Abdukarimov, “Stability of a solution to one combined mixed problem for the Klein–Gordon–Fock equation with a variable coefficient”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 2, 3–10; Moscow University Mathematics Bulletin, 76:2 (2021), 45–52
Citation in format AMSBIB
\Bibitem{Abd21}
\by M.~F.~Abdukarimov
\paper Stability of a solution to one combined mixed problem for the Klein--Gordon--Fock equation with a variable coefficient
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 2
\pages 3--10
\mathnet{http://mi.mathnet.ru/vmumm4384}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4300488}
\zmath{https://zbmath.org/?q=an:1471.93204}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2021
\vol 76
\issue 2
\pages 45--52
\crossref{https://doi.org/10.3103/S0027132221020029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000679355600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111420056}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4384
  • https://www.mathnet.ru/eng/vmumm/y2021/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024