Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 1, Pages 67–71 (Mi vmumm4383)  

This article is cited in 4 scientific papers (total in 4 papers)

Short notes

Attainability set and robust stability of perturbed oscillatory systems

V. V. Aleksandrova, D. I. Bugrova, V. N. Zhermolenkob, I. S. Konovalenkoc

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Gubkin Russian State University of Oil and Gas
c Benemérita Universidad Autónoma de Puebla
Full-text PDF (372 kB) Citations (4)
References:
Abstract: The second-order oscillatory system with constant coefficients in the presence of a time-varying external perturbation is considered. Extreme points of the limit cycle on the phase plane of the system that exists under the action of the worst perturbation are found. To obtain conditions for robust stability of the system in relation to a time-varying perturbation, the limit cycle is used.
Key words: limit cycle, extreme points, robust stability.
Funding agency Grant number
Russian Foundation for Basic Research 18-00-01590
Received: 17.06.2020
English version:
Moscow University Mechanics Bulletin, 2021, Volume 76, Issue 1, Pages 30–34
DOI: https://doi.org/10.3103/S0027133021010027
Bibliographic databases:
Document Type: Article
UDC: 531.396
Language: Russian
Citation: V. V. Aleksandrov, D. I. Bugrov, V. N. Zhermolenko, I. S. Konovalenko, “Attainability set and robust stability of perturbed oscillatory systems”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1, 67–71; Moscow University Mechanics Bulletin, 76:1 (2021), 30–34
Citation in format AMSBIB
\Bibitem{AleBugZhe21}
\by V.~V.~Aleksandrov, D.~I.~Bugrov, V.~N.~Zhermolenko, I.~S.~Konovalenko
\paper Attainability set and robust stability of perturbed oscillatory systems
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 1
\pages 67--71
\mathnet{http://mi.mathnet.ru/vmumm4383}
\zmath{https://zbmath.org/?q=an:1478.34045}
\transl
\jour Moscow University Mechanics Bulletin
\yr 2021
\vol 76
\issue 1
\pages 30--34
\crossref{https://doi.org/10.3103/S0027133021010027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000670280500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109778604}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4383
  • https://www.mathnet.ru/eng/vmumm/y2021/i1/p67
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:119
    Full-text PDF :24
    References:26
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024