Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Moskov. Univ. Ser. 1. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2021, Number 1, Pages 60–63 (Mi vmumm4381)  

Short notes

On duality for cohomology with compact supports

Wu Yang

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The canonical mapping of cohomology with compact supports via linear functionals on homology, generally speaking, is not surjective. The image of the mapping is described by linear functionals with compact supports. In this paper we prove the formula $H_c ^ k (X; \mathbb {R}) = {\rm Hom}_c (H_k ^ c (X; \mathbb {R}), \mathbb {R})$, where $ X $ is a countable simplicial complex with an additional requirement, the star of each simplex has a finite number of simplices in all dimensions.
Key words: cohomology with compact supports, homology with closed supports, homomorphism with compact supports.
Received: 06.07.2020
English version:
Moscow University Mathematics Bulletin, 2021, Volume 76, Issue 1, Pages 41–43
DOI: https://doi.org/10.3103/S0027132221010083
Bibliographic databases:
Document Type: Article
UDC: 515.142.21
Language: Russian
Citation: Wu Yang, “On duality for cohomology with compact supports”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 1, 60–63; Moscow University Mathematics Bulletin, 76:1 (2021), 41–43
Citation in format AMSBIB
\Bibitem{Yan21}
\by Wu~Yang
\paper On duality for cohomology with compact supports
\jour Vestnik Moskov. Univ. Ser.~1. Mat. Mekh.
\yr 2021
\issue 1
\pages 60--63
\mathnet{http://mi.mathnet.ru/vmumm4381}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4288433}
\zmath{https://zbmath.org/?q=an:7392393}
\transl
\jour Moscow University Mathematics Bulletin
\yr 2021
\vol 76
\issue 1
\pages 41--43
\crossref{https://doi.org/10.3103/S0027132221010083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000671348300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85109638762}
Linking options:
  • https://www.mathnet.ru/eng/vmumm4381
  • https://www.mathnet.ru/eng/vmumm/y2021/i1/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :18
    References:26
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024